# Belief in Probability – Part 2

Last time I started with my friend Willie’s bold claim that he doesn’t believe in probability; then I gave a short history of probability. I observed that defining probability is a controversial matter, split between objective and subjective interpretations. About the only thing these interpretations agree on is that probability values range from zero to one, where P = 1 means certainty. When you learn probability and statistics in school, you are getting the frequentist interpretation, which is considered objective. Frequentism relies on directly equating observed frequencies with probabilities. In this model, the probability of an event exactly equals the limit of the relative frequency of that outcome in an infinitely large number of trials.

The problem with this interpretation in practice – in medicine, engineering, and gambling machines – isn’t merely the impossibility of an infinite number of trials. A few million trials might be enough. Running trials works for dice but not for earthquakes and space shuttles. It also has problems with things like cancer, where plenty of frequency data exists. Frequentism requires placing an individual specimen into a relevant population or reference class. Doing this is easy for dice, harder for humans. A study says that as a white males of my age I face a 7% probability of having a stroke in the next 10 years. That’s based on my membership in the reference class of white males. If I restrict that set to white men who don’t smoke, it drops to 4%. If I account for good systolic blood pressure, no family history of atrial fibrillation or ventricular hypertrophy, it drops another percent or so.

Ultimately, if I limit my population to a set of one (just me) and apply the belief that every effect has a cause (i.e., some real-world chunk of blockage causes an artery to rupture), you can conclude that my probability of having a stroke can only be one of two values – zero or one.

Frequentism, as seen by its opponents, too closely ties probabilities to observed frequencies. They note that the limit-of-relative-frequency concept relies on induction, which might mean it’s not so objective after all. Further, those frequencies are unknowable in many real-world cases. Still further, finding an individual’s correct reference class is messy and subjective. Finally, no frequency data exists for earthquakes that haven’t happened yet. Every one is unique. All that seems to do some real damage to frequentism’s utility score.

The subjective interpretations of probability offers fixes to some of frequentism’s problems. The most common subjective interpretation is Bayesianism, which itself comes in several flavors. All subjective interpretations see probability as a degree of belief in a specific outcome, as held by a rational person. Think of it as a fair bet with odds. The odds you’re willing to accept for a bet on your race horse exactly equals your degree of belief in that horse’s ability to win. If your filly were in the same race an infinite number of times, you’d expect to break even, based on those odds, whether you bet on her or against her.

Subjective interpretations rely on logical coherence and belief. The core of Bayesianism, for example, is that beliefs must 1) originate with a numerical probability estimate, 2) adhere to the rules of probability calculation, and 3) follow an exact rule for updating belief estimates based on new evidence. The second rule deals with the common core of probability math used in all interpretations. These include things like how to add and multiply probabilities and Bayes theorem, not to be confused with Bayesianism the belief system. Bayes theorem is an uncontroversial equation relating the probability of A given B to the probability of A and the probability of B. The third rule of Bayesianism is similarly computational, addressing how belief is updated after new evidence. The details aren’t needed here. Note that while Bayesianism is generally considered subjective, it is still computationally exacting.

The obvious problem with all subjective interpretations, particularly as applied to engineering problems, is that they rely, at least initially, on expert opinion. Life and death rides on the choice of experts and the value of their opinions. As Richard Feynman noted in his minority report on the Challenger, official rank plays too large a part in the choice of experts, and the higher (and less technical) the rank, the more optimistic the probability estimates.

The engineering risk analysis technique most consistent with the frequentist (objective) interpretation of probability is fault tree analysis. Other risk analysis techniques, some embodied in mature software products, are based on Bayesian (subjective) philosophy.

When Willie said he didn’t believe in probability, he may have meant several things. I’ll try to track him down and ask him; but I doubt the incident stuck in his mind as it did mine. If he meant that he doesn’t believe that probability was useful in system design, he had a rational belief – but one with which I strongly disagree. I doubt he meant that though.

Willie was likely leaning toward the ties between probability and redundancy in system design. Probability is the calculus by which redundancy is allocated to redundant systems. Willie may think that redundancy doesn’t yield the expected increase in safety because having more equipment means more things than can fail. This argument fails to face that, ideally speaking, a redundant path does double the chance having a component failure, but squares the probability of system failure. That’s a good thing, since squaring a number less than one makes it smaller. In other words, the benefit in reducing the chance of system failure vastly exceeds the deficit of having more components to repair. If that was his point, I disagree in principle, but accept that redundancy doesn’t eliminate the need for component design excellence.

He may also think system designers can be overly confident of the exponential increase in modeled probability of system reliability that stems from redundancy. That increase in reliability is only valid if the redundancy creates no common-cause or cascading failures, and no truly latent (undetected for unknown time intervals) failures of  redundant paths that aren’t currently operating. If that’s his point, then we agree completely. This is an area where pairing the experience and design expertise of someone like Willie with rigorous risk analysis using fault trees yields great systems.

Unlike Willie, Challenger-era NASA gave no official statement on its belief in probability. Feynman’s report points to NASA’s use of numeric probabilities for specific component failure modes. The Rogers Commission report says that NASA management talked about degrees of probability. From this we might guess that NASA believed in probability and its use in measuring risk. On the other hand, the Rogers Commission report also gives examples of NASA’s disbelief in probability’s usefulness. For example, the report’s Technical Management section states that, “NASA has rejected the use of probability on the basis that such techniques are insufficient to assure that adequate safety margins can be applied to protect the lives of the crew.”

Regardless of NASA’s beliefs about probability, it’s clear that NASA didn’t use fault tree analysis for the space shuttle program prior to the Challenger disaster. Nor did it use Bayesian inference methods, any hybrid probability model, or any consideration of probability beyond opinions about failures of  critical items. Feynman was livid about this. A Bayesian (subjective, but computational) approach would have at least forced NASA to make its subjective judgments explicit and would have produced a rational model of its beliefs. Post-Challenger Bayesian analyses, including one by NASA, varied widely, but all indicated unacceptable risk. NASA has since adopted risk management approaches more consistent with those used in commercial aircraft design.

An obvious question arises when you think about using a frequentist model on nearly one-of-a-kind vehicles. How accurate can any frequency data be for something as infrequent as a shuttle flight? Accurate enough, in my view. If you see the shuttle as monolithic and indivisible, the data is too sparse; but not if you view it as a system of components, most of which, like o-ring seals, have close analogs in common use, having known failure rates.

The FAA mandated probabilistic risk analyses of the frequentist variety (effectively mandating fault trees) in 1968. Since then flying has become safe, by any measure. In no other endeavor has mankind made such an inherently dangerous activity so safe. Aviation safety progressed through many innovations, redundant systems being high on the list. Probability is the means by which you allocate redundancy. You can’t get great aircraft systems without designers like Willie. Nor can you get them without probability.

# Belief in Probability – Part 1

Years ago in a meeting on design of a complex, redundant system for a commercial jet, I referred to probabilities of various component failures. In front of this group of seasoned engineers, a highly respected, senior member of the team interjected, “I don’t believe in probability.”

His proclamation stopped me cold. My first thought was what kind a backward brute would say something like that, especially in the context of aircraft design. But Willie was no brute. In fact he is a legend in electro-hydro-mechanical system design circles; and he deserves that status. For decades, millions of fearless fliers have touched down on the runway, unaware that Willie’s expertise played a large part in their safe arrival. So what can we make of Willie’s stated disbelief in probability?

Friends and I have been discussing risk science a lot lately – diverse aspects of it including the Challenger disaster, pharmaceutical manufacture in China, and black swans in financial markets. Risk science relies on several different understandings of risk, which in turn rely on the concept of probability. So before getting to risk, I’m going to jot down some thoughts on probability. These thoughts involve no computation or equations, but they do shed some light on Willie’s mindset. First a bit of background.

Oddly, the meaning of the word probability involves philosophy much more than it does math, so Willie’s use of belief might be justified. People mean very different things when they say probability. The chance of rolling a 7 is conceptually very different from the chance of an earthquake in Missouri this year. Probability is hard to define accurately. A look at its history shows why.

Mathematical theories of probability only first appeared in the late 17th century. This is puzzling, since gambling had existed for thousands of years. Gambling was enough of a problem in the ancient world that the Egyptian pharaohs, Roman emperors and Achaemenid satraps outlawed it. Such legislation had little effect on the urge to deal the cards or roll the dice. Enforcement was sporadic and halfhearted. Yet gamblers failed to develop probability theories. Historian Ian Hacking  (The Emergence of Probability) observes, “Someone with only the most modest knowledge of probability mathematics could have won himself the whole of Gaul in a week.”

Why so much interest with so little understanding? In European and middle eastern history, it seems that neither Platonism (determinism derived from ideal forms) nor the Judeo/Christian/Islamic traditions (determinism through God’s will) had much sympathy for knowledge of chance. Chance was something to which knowledge could not apply. Chance meant uncertainty, and uncertainty was the absence of knowledge. Knowledge of chance didn’t seem to make sense.

The term probability is tied to the modern understanding of evidence. In medieval times, and well into the renaissance, probability literally referred to the level of authority –  typically tied to the nobility –  of a witness in a court case. A probable opinion was one given by a reputable witness. So a testimony could be highly probable but very incorrect, even false.

Through empiricism, central to the scientific method, the notion of diagnosis (inference of a condition from key indicators) emerged in the 17th century. Diagnosis allowed nature to be the reputable authority, rather than a person of status. For example, the symptom of skin-spots could testify, with various degrees of probability, that measles had caused it. This goes back to the notion of induction and inference from the best explanation of evidence, which I discussed in a post on The Multidisciplinarian blog. Pascal, Fermat and Huygens brought probability into the respectable world of science.

But outside of science, probability and statistics still remained second class citizens right up to the 20th century. You used these tools when you didn’t have an exact set of accurate facts. Recognition of the predictive value of probability and statistics finally emerged when governments realized that death records had uses beyond preserving history, and when insurance companies figured out how to price premiums competitively.

Also around the turn of  the 20th century, it became clear that in many realms – thermodynamics and quantum mechanics for example – probability would take center stage against determinism. Scientists began to see that some – perhaps most – aspects of reality were fundamentally probabilistic in nature, not deterministic. This was a tough pill for many to swallow, even Albert Einstein. Einstein famously argued with Niels Bohr, saying, “God does not play dice.” Einstein believed that some hidden variable would eventually emerge to explain why one of two identical atoms would decay while the other did not. A century later Bohr is still winning that argument.

What we mean when we say probability today may seem uncontroversial – until you stake lives on it. Then it gets weird, and definitions become important. Defining probability is a wickedly contentious matter, because wildly conflicting conceptions of probability exist.  They can be roughly divided into the objective and subjective interpretations. In the next post I’ll focus on the frequentist interpretation, which is objective, and the subjectivist interpretations as a group. I’ll look at the impact of accepting – or believing in – each of these on the design of things like airliners and space shuttles from the perspectives of my pal Willie, Richard Feynman, and NASA. Then I’ll defend my own views on when and where to hold various beliefs about probability.

Autobrake diagram courtesy of Biggles Software.

# Is Fault Tree Analysis Deductive?

An odd myth persists in systems engineering and risk analysis circles. Fault tree analysis (FTA), and sometimes fault trees themselves, are said to be deductive. FMEAs are called inductive. How can this be?

By fault trees I mean Boolean logic modeling of unwanted system states by logical decomposition of equipment fault states into combinations of failure states of more basic components. You can read more on fault tree analysis and its deductive nature at Wikipedia. By FMEA (Failure Mode & Effects Analysis) I mean recording all the things that can go wrong with the components of a system. Writers who find fault trees deductive also find FMEAs, their complement, to be inductive. I’ll argue here that building fault trees is not a deductive process, and that there is possible harm in saying so. Secondarily, I’ll offer that while FMEA creation involves inductive reasoning, the point carries little weight, since the rest of engineering is inductive reasoning too.

Word meanings can vary with context; but use of the term deductive is consistent across math, science, law, and philosophy. Deduction is the process of drawing a logically certain conclusion about a particular instance from a rule or premise about the general. Assuming all men are mortal, if Socrates is a man, then he is mortal. This is true regardless of the meaning of the word mortal. It’s truth is certain, even if Socrates never existed, and even if you take mortal to mean living forever.

Example from a software development website:

FMECA is an inductive analysis of system failure, starting with the presumed failure of a component and analyzing its effect on system stability: “What will happen if valve A sticks open?” In contrast, FTA is a deductive analysis, starting with potential or actual failures and deducing what might have caused them: “What could cause a deadlock in the application?”

The well-intended writer says we deduce the causes of the effects in question. Deduction is not up to that task. When we infer causes from observed effects, we are using induction, not deduction.

How did the odd claims that fault trees and FTAs are deductive arise? It might trace to William Vesely, NASA’s original fault tree proponent. Vesely sometimes used the term deductive in his introductions to fault trees. If he meant that the process of reducing fault trees into cut sets (sets of basic events or initiators) is deductive, he was obviously correct. But calculation isn’t the critical aspect of fault trees; constructing them is where the effort and need for diligence lie. Fault tree software does the math. If Vesely saw the critical process of constructing fault trees and supplying them with numerical data (often arduous, regardless of software) as deductive – which I doubt – he was certainly wrong.

Inductive reasoning, as used in science, logic and philosophy, means inferring general rules or laws from observations of particular instances. The special use of the term math induction actually refers to deduction, as mathematicians are well aware. Math induction is deductive reasoning with a confusing title. Induction in science and engineering stems from our need to predict future events. We form theories about how things will behave in the future based on observations of how similar things behaved in the past. As I discussed regarding Bacon vs. Descartes, science is forced into the realm of induction because deduction never makes contact with the physical world – it lives in the mind.

Inductive reasoning is exactly what goes on when you construct a fault tree. You are making inferences about future conditions based on modeling and historical data – a purely inductive process. The fact that you use math to solve fault trees does not make fault trees any more deductive than the presence of math in lab experiments makes empirical science deductive.

Does this matter?

It’s easy enough to fix this technical point in descriptions fault tree analysis. We should do so, if merely to avoid confusing students. But more importantly, quantitative risk analysis – including FTA – has its enemies. They range from several top consultancies selling subjective, risk-score matrix methodologies dressed up in fancy clothes (see Tony Cox’s SIRA presentation on this topic) to some of NASA’s top management – those flogged by Richard Feynman in his minority report on the Challenger disaster. The various criticisms of fault tree analysis say it is too analytical and correlates poorly with the real world. Sound familiar? It echoes a feud between the heirs of Bacon (induction) and the heirs of Descartes (deduction). Some of fault trees’ foes find them overly deductive. They then imply that errors found in past quantitative analyses impugn objectivity itself, preferring subjective analyses based on expert opinion. This curious conclusion would not follow, even if fault tree analyses were deductive, which they are not.

.
——————————————

Science is the belief in the ignorance of experts. – Richard Feynman

.
.